This theoretical work investigates the linear (absorption and emission) and nonlinear (first hyperpolarizability and TPA) optical properties of donor–π–acceptor (D–π–A) molecular architectures based on functionalized benzoxazoles, with potential applications in optoelectronic technologies such as OLEDs and solar cells. Four π-conjugated compounds were studied in the gas phase and in polar (methanol) and nonpolar (toluene) solvents, employing DFT with the B3LYP and CAM-B3LYP functionals and the 6-311++G(d,p) basis set, as implemented in Gaussian and Dalton. The results reveal that the chemical environment induces spectral shifts and modulates the intensity of electronic transitions. In particular, the compound 2-((4-((5-nitro-2-oxo-1,3-benzoxazol-3(2H)-yl)amino)phenyl)methyl)-1,3-benzoxazole exhibited outstanding behavior in methanol, with a significant increase in dipole moment, polarizability, and first hyperpolarizability (static and dynamic at 1064 nm), reaching a TPA cross-section close to 150 GM. These findings highlight the key role of ionic substituents in tuning the optical response of π-conjugated systems and underscore their potential as functional materials for high-performance light-emitting and energy-conversion devices.
Loading....